Battling COVID-19 using UV light

Image

 

Although most experts agree that a vaccine would significantly slow or eventually stop the spread, the work to develop, approve and distribute such a vaccine are likely months away. That leaves us with only prevention efforts such as masks, social distancing and disinfecting, which partially due to human inconsistencies in behavior, have proven to be variable in effectiveness.

Despite these grim realities about the novel coronavirus that has taken 2020 by storm, disrupting the work, school and personal lives of nearly everyone on the globe, some University of New Mexico researchers have found a possible breakthrough in how to manage this virus, as well as future ones.

UNM co-authors on the paper were Florencia A. Monge, of UNM's Center for Biomedical Engineering and the biomedical engineering graduate program; Virginie Bondu of the Department of Molecular Genetics and Microbiology at the UNM School of Medicine; Alison M. Kell, Department of Molecular Genetics and Microbiology at the UNM School of Medicine; and Patrick L. Donabedian of the nanoscience and microsystems engineering graduate program at UNM. Also on the team are Kirk S. Schanze and Pradeepkumar Jagadesan, both of the Department of Chemistry at the University of Texas at San Antonio.

Description: Does UV light kill the new coronavirus? | Live Science

Although disinfectants such as bleach or alcohol are effective against the virus, they are volatile and corrosive, which limit lasting sterilization of surfaces treated by these products, Whitten said.

What is different about these polymer and oligomer materials is that when activated with UV light, they provide a coating that is shown to be fast acting and highly effective, reducing the concentration of the virus by five orders of magnitude, Chi said.

"As far as we know so far, materials such as ours are not active against SARS-CoV-2 in the dark and require activation by irradiation with ultraviolet or visible light, depending on where the specific antimicrobial absorbs light," he said. "In the dark, our antimicrobial materials 'dock' with the virus, and then on irradiation, they activate oxygen. It is this active, excited state of oxygen that starts the chain of reactions that inactivate the virus."

And this science can easily be applied into consumer, commercial and healthcare products, such as wipes, sprays, clothing, paint, personal protective equipment (PPE) for healthcare workers, and really almost any surface.

Due to the sensitive nature of working with a virus such as coronavirus, it was crucial for Kell to be part of the team, since the work had to be done in cooperation with the UNM School of Medicine, which has BSL-3 lab facilities that are essential to doing study on the highly-contagious active virus, Ista said.

"We want to be ready for the next pandemic."

Media contact
Mercy
Microbiology Current Research!